Skip to main content
Open In ColabOpen on GitHub

ChatVertexAI

This page provides a quick overview for getting started with VertexAI chat models. For detailed documentation of all ChatVertexAI features and configurations head to the API reference.

ChatVertexAI exposes all foundational models available in Google Cloud, like gemini-1.5-pro, gemini-1.5-flash, etc. For a full and updated list of available models visit VertexAI documentation.

Google Cloud VertexAI vs Google PaLM

The Google Cloud VertexAI integration is separate from the Google PaLM integration. Google has chosen to offer an enterprise version of PaLM through GCP, and this supports the models made available through there.

Overviewโ€‹

Integration detailsโ€‹

ClassPackageLocalSerializableJS supportPackage downloadsPackage latest
ChatVertexAIlangchain-google-vertexaiโŒbetaโœ…PyPI - DownloadsPyPI - Version

Model featuresโ€‹

Tool callingStructured outputJSON modeImage inputAudio inputVideo inputToken-level streamingNative asyncToken usageLogprobs
โœ…โœ…โŒโœ…โœ…โœ…โœ…โœ…โœ…โŒ

Setupโ€‹

To access VertexAI models you'll need to create a Google Cloud Platform account, set up credentials, and install the langchain-google-vertexai integration package.

Credentialsโ€‹

To use the integration you must:

  • Have credentials configured for your environment (gcloud, workload identity, etc...)
  • Store the path to a service account JSON file as the GOOGLE_APPLICATION_CREDENTIALS environment variable

This codebase uses the google.auth library which first looks for the application credentials variable mentioned above, and then looks for system-level auth.

For more information, see:

If you want to get automated tracing of your model calls you can also set your LangSmith API key by uncommenting below:

# os.environ["LANGSMITH_API_KEY"] = getpass.getpass("Enter your LangSmith API key: ")
# os.environ["LANGSMITH_TRACING"] = "true"

Installationโ€‹

The LangChain VertexAI integration lives in the langchain-google-vertexai package:

%pip install -qU langchain-google-vertexai
Note: you may need to restart the kernel to use updated packages.

Instantiationโ€‹

Now we can instantiate our model object and generate chat completions:

from langchain_google_vertexai import ChatVertexAI

llm = ChatVertexAI(
model="gemini-1.5-flash-001",
temperature=0,
max_tokens=None,
max_retries=6,
stop=None,
# other params...
)
API Reference:ChatVertexAI

Invocationโ€‹

messages = [
(
"system",
"You are a helpful assistant that translates English to French. Translate the user sentence.",
),
("human", "I love programming."),
]
ai_msg = llm.invoke(messages)
ai_msg
AIMessage(content="J'adore programmer. \n", response_metadata={'is_blocked': False, 'safety_ratings': [{'category': 'HARM_CATEGORY_HATE_SPEECH', 'probability_label': 'NEGLIGIBLE', 'blocked': False}, {'category': 'HARM_CATEGORY_DANGEROUS_CONTENT', 'probability_label': 'NEGLIGIBLE', 'blocked': False}, {'category': 'HARM_CATEGORY_HARASSMENT', 'probability_label': 'NEGLIGIBLE', 'blocked': False}, {'category': 'HARM_CATEGORY_SEXUALLY_EXPLICIT', 'probability_label': 'NEGLIGIBLE', 'blocked': False}], 'usage_metadata': {'prompt_token_count': 20, 'candidates_token_count': 7, 'total_token_count': 27}}, id='run-7032733c-d05c-4f0c-a17a-6c575fdd1ae0-0', usage_metadata={'input_tokens': 20, 'output_tokens': 7, 'total_tokens': 27})
print(ai_msg.content)
J'adore programmer.

Chainingโ€‹

We can chain our model with a prompt template like so:

from langchain_core.prompts import ChatPromptTemplate

prompt = ChatPromptTemplate.from_messages(
[
(
"system",
"You are a helpful assistant that translates {input_language} to {output_language}.",
),
("human", "{input}"),
]
)

chain = prompt | llm
chain.invoke(
{
"input_language": "English",
"output_language": "German",
"input": "I love programming.",
}
)
API Reference:ChatPromptTemplate
AIMessage(content='Ich liebe Programmieren. \n', response_metadata={'is_blocked': False, 'safety_ratings': [{'category': 'HARM_CATEGORY_HATE_SPEECH', 'probability_label': 'NEGLIGIBLE', 'blocked': False}, {'category': 'HARM_CATEGORY_DANGEROUS_CONTENT', 'probability_label': 'NEGLIGIBLE', 'blocked': False}, {'category': 'HARM_CATEGORY_HARASSMENT', 'probability_label': 'NEGLIGIBLE', 'blocked': False}, {'category': 'HARM_CATEGORY_SEXUALLY_EXPLICIT', 'probability_label': 'NEGLIGIBLE', 'blocked': False}], 'usage_metadata': {'prompt_token_count': 15, 'candidates_token_count': 8, 'total_token_count': 23}}, id='run-c71955fd-8dc1-422b-88a7-853accf4811b-0', usage_metadata={'input_tokens': 15, 'output_tokens': 8, 'total_tokens': 23})

API referenceโ€‹

For detailed documentation of all ChatVertexAI features and configurations, like how to send multimodal inputs and configure safety settings, head to the API reference: https://python.langchain.com/api_reference/google_vertexai/chat_models/langchain_google_vertexai.chat_models.ChatVertexAI.html


Was this page helpful?